
A Microprogramming Support routines more compactly than evcn the best optimizing
compilers; complexity becomes an issue only in longer

Architectures routines where humans have a less clear-cut advantage.

Steven Molnar and Mark C. Surles Microcoding by hand, however, is tedious and error-prone.
The microprogrammer must contend with low-level details

Department of Computer Science not encountered in high-level languages, making code
University of North Carolina development significantly slower and more expensive.

Chapel Hill, NC 27599 Many of these details are intrinsic to the goal of
optimization, such as the selection of opcodes and the

Abstract scheduling of instructions. Other details, however, are
--. describea software tool to aid the development of irrelevant to the task of writing optimal code: allocating

microcode for horizontal, pipelined architectures. The tool variables to registers, checking for latency errors (an
is a preprocessor for microcode source *hat allows the insidious problem in pipelined architectures), and writing
programmer full flexibility to optimize code, but removes many copies of similar pieces of code for procedure calls,
many of the tedious and error-prone aspects of micro- input/output, etc.
programming. It automatically allocates floating-point
registers, expands complex instructions, and analyzes code This paper describes an approach ilsed by the authors to
for pipeline-related errors, speed microcode development on parallel, pipelined
- - -;-, ;machine by providing the programmer the flexibility to
We- have written a working version of the tool for the optimize, yet shielding him from irrelevant details. Our
Weitek XL-8032 floating-point chip set, a horizontal effort culminated in the design and implementation of a tool

C architecture with pipelined sequencer and floating-point called MAXL to aid in microprogramming the Weitek XL-
datapaths. Although the tool was designed for the XL 8032 floating point chip set. The tool was used to code

00 architecture, the algorithms used are applicable to other portions of a real-ti 3-D graphics system. Since the
parallelpipelined architectures. Weitek XL is typical a large class of VLSI processors,

the techniques described here can be used to write similar
This paper argues for the existence of such tools, tools for other machines.< summarizes the algorithms needed to analyze control and
data flow in the presence of pipelining, and characterizes the II. THE WEITEK XL-8032
tool's performance based on nine microcoded routines
written for a real-time 3-D graphics system. " The Weitek XL-8032 chip set [10] is a horizontally-

microcoded, pipelined architecture. It is composed of three
I. INTRODUCTION separate processors: a sequencer, an integer, and a floating-

point processor, all sharing the same 64-bit instruction
To achieve higher performances, many of today's VLSI word. Both the sequencer and floating-point processors are
architectures have resorted to instruction and datapath pipelined: the sequencer by one cycle, and the floating-
pipelining and wide instruction woros. Such architectures point processor by four cycles (this pipelining is variable
offer many MIPs and MFLOPs, but require intricately under certain conditions). The chip set contains 32 integer
structured code to utilize them. Many of these processors registers, 32 floating-point registers, and three temporary
have had high-level language compilers written for them, floating-point registers. Instructions following a branch
often employing sophisticated optimization techniques. (branch shadows) may be executed or not, depending on
Even so, compilers seldom produce code that uses the full run-time conditions.
instruction width on every cycle. To do so requires that the
code be compacted, a difficult process in which code is M. SUPPORTING TIlE MICROPROGRAMMER
analyzed for potential parallelism and transformed so that
compatible instructions execute together, at the same time Based on our experience writing microcode for the 'eitek
ensuring that the original semantics of the algorithm are XL, we decided that the support tool MAXL should have
preserved [9]. the following features:
Several impressive techniques for approximating optimal * Input should be at the microcode source level. An
codeer compresionve echniqueorappd rntly [oua intermediate or high-level language might make_,code compaction have appeared recently [6,7], though programming easier, but would restrict the programmer's
programming by hand with microcode still attains the best a mize ode.

• ability to optimize code.,€
performance. Human microprogrammers have access to * MAXL should automatically allocate floating poin
higher-level information about an algorithm than does a registers. Existing code often used 60 or more floating
compiler; a human can redesign portions of an algorithm to point variables that were hand-allocated into the 32 "
aid compaction, while a compiler must adhere to the floating-point registers. Using MAXL, the programmerlI
original semantics. As a result, humans can code short could define and use symbolic variable names hat would rL TL

AY 12 198

or e2nual
1 -it

' on M.-roprogrammin 4 and icroarc hiLte -Jre

b e h e ld . 9 - -D e c . 2, 19 8 8 , " r7. f

automatically be assigned to registers. MAXL would not A more complete description of the algorithms is contained
generate loads and stores to save registers. Instead, it would in (4].
provide warning messages to the user identifying where
allocation was unsuccessful. We assumed the user could do Syntactic and Semantic Analysis. This phase
a better job of fixing this than our program. parses input and builds a parse tree using the Interface

- MAXL need not allocate integer registers; in our Description Language (IDL) Toolkit [8]. It evaluates

experience there has always been a sufficient number of semantic attributes, such as jump addresses and variable

these. references. It extracts instruction-dependent information
needed in later phases, such as the number and types of

• MAXL should accept a superset of Weitek's arguments. Finally, it determines the conditions under
microcode language. Meta instructions for declaring which instructions execute, including the run-time
automatic register variables and specifying procedure calls conditional execution of branch shadow instructions.
and debug print statements would be used to supplement
Weitek's microcode language. Control Flow Analysis. This phase propagates

- MAXL should work within single subroutines only. control flow information (line adjacencies and branch
Most code needing to be microcoded can be isolated to a pointers) to take sequencer pipelining into account. The
single subroutine. To handle multiple routines would first step is to connect all sequentially adjacent statements
increase the complexity of the tool without greatly by pointers, except for instructions one and two cycles after
increasing its effectiveness, an unconditional branch. Next, it adds branch pointers to

- MAXL should check for as many semantic errors as branch shadow instructions, connecting them to the branch
possible. Of particular importance would be tests for target instruction. Control flow analysis results in a
latency violations and unreachable code. directed graph representing all possible runtime paths

- MAXL should be fast enough to be pan of the normal within the program.
program development loop, rather than being considered a
"verifier," to be used only occasionally. livedead(instr: instruction;

Live in: Set of variables)

IV. IMPLEMenTiNG MAXL begin
(compute new set of live variables}

To automatically allocate floating-point registers and Livenew *-- (instr.Live U Live_in U
identify semantic errors, MAXL must analyze the semantic instr .RHS) - instr. LES;

structure of the code. Much literature has been written on
analyzing a program's control flow and variable usage (I], before and no change, end recursion
but most of it assumes that results become available if instr.visited AND
immediately after operations are performed (no pipelining). instr.Live = Live-new then
In designing MAXL, we used the algorithms and return
techniques in the literature as a starting point, but modified endif;
them and developed new ones for use in a pipelined domain.
MAXL is composed of several phases, each abstracting instr.visited -- True;
additional information from the raw microcode source until instr. Live - Livenew;

conventional register allocation techniques can be used.
Figure 1 illustrates the phases within MAXL. (propagate live variables upward)

foreach path upward in ctrl flow craph
live dead(path.instr, Live-new)

Syntactic/ Control Variable end

Source Semantic Flow Lifetime end;~~~~~Analys i IAayi IAay's AFigure 2. Recursive routine to compute

variable lifetimes

PVariable Lifetime Analysis. This phase computes
A o Relie Sorc the set of variables, termed live, whose values must beE -as a,,oi=,on c retained during each instruction. Optimizing compilers

typically do this using data-flow equations (1]. These are
solved for transitive closure by repeatwdly applying the

Figure 1. Phases within MAXL equations to each instruction in the order of control-flow,
beginning at a routine's entry-point. Since we are

The following sections describe each of the phases, giving restricting our analysis to single subroutines, it is more
particular attention to the phases that handle pipelining. appropriate to begin at the routine's exit point. A recursive
Only a summary of the algorithms will be prcsented here. ascent routine computes variable lifetimes. To implement

IS

this routine we define two additional fields for each doubtless, has its own peculiarities. The tool could also be
instruction: a boolean flag visited (initialized to incorporated into the backend of a high-level-language
False), and the current set of live variables live compiler to perform register allocation after parallelizing
(initialized to (] at each instruction). Figure 2 presents the and code generation.
recursive ascent algorithm livedead.

ACKNOWLEDGMENT
Pipeline Delay Analysis. This phase propagates

variable lifetimes forward through the control flow graph We acknowledge the many people who have contributed to
after each assignment to a register variable. This is the development of MAXL. Trey Greer conceived the idea;
necessary since interrupts may occur at any time, causing Rick Snodgrass provided ideas for algorithms as well as
the datapath pipeline to magically empty before the normal access to the IDL Toolkit; Greg Turk and Vicki Interrante
latency period has expired. Any live variables sharing the wrote MAXL's parsing, and output phases; Clement
register will be corrupted. Variables being assigned are Cheung currently is supporting the program; and the Pixel-
made live for latency instructions following themadeliv forlatncy nstuctins olloingthe planes team found many bugs in early versions of the
assignment. This phase also checks for variables that are plnsam f
used before set and handles the special cases where results program.
become available early. This work was supported in part by the Office of Naval

Research Contract No. N00014-86-K-0680, NSF Grant No.Register Allocation. This phase assigns register MIP-8601552, and U.S. DARPA/ISTO Order No. 6090.

variables to physical registers using a graph-coloring

algorithm [3]. Only variables that do not interfere may
occupy the same register. If register allocation is REFERENCES
successful, MAXL writes out microcode source containing
the new register assignments and expanded meta [11 A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
instructions. If it is unsuccessful, MAXL outputs the Principles, Techniques, and Tools. Reading, MA:

variables that cannot be assigned and an indication of where Addison-Wesley, 1986.

the conflict occured. [2] A. Aiken and A. Nicolau, "A development
environment for horizontal microcode," IEEE Trans.
on Software Engineering, vol. 14, no. 5, pp.

V. RESULTS 584-594, May 1988.
[3] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J.

We began implementing MAXL in October, 1987. We Cocke, M. E. Hopkins, and P. W. Markstein,

released the current version of MAXL in April, 1988. "Register allocation via coloring," Comput. Lang.,

Since that time it has been actively used by members the [vol. 6, pp. 47-57, 1981.
[41 C. Cheung, S. Molnar, M. Surles, and R. Snodgrass,

Pixel-planes (5] software team. More microcode routines "MAXL: A microcode development tool for the
have been written in the last six months with MAXL than Weitek XL-8032," Technical Report (forthcoming),
were written in the previous year before it existed. The Computer Science Dept., Univ. of North Carolina at
microcoded routines demonstrate a speed-up factor of 3-4 Chapel Hill, Chapel Hill, NC.
over the same routines written in C. The largest routine [5] J. Eyles, J. Austin, H. Fucl , T. Greer, and J.
written so far uses 78 variables. MAXL compressed all 78 Poulton, "Pixel-planes 4: A summary," Advances in
into 30 registers. So far no one has written a routine using Graphics Hardware 2: Proceedings of the

more floating-point variables than can be allocated into the Eurographics '87 Second Workshop on Graphics

XL's 32 registers. Hardware.
[6] J. A. Fisher, "Trace scheduling: A technique for global.

microcode compaction," IEEE Trans. Comput., vol.
VI. CONCLUSION C-30, no. 7, pp. 478-490, July 1981.

[71 R. A. Mueller, M. R. Duda, P. H. Sweany. and J. S.

MAXL is a microcode development tool that allows the Walicki, "llorizon: A retargetable compiler for
programmer full flexibility to optimize code, while horizontal microarchitectures," IEEE Trans. on

Software Engineering, vol. 14, no. 5, pp. 575-583,
automating many tedious aspects of microcoding. Its May 1988.
success within our group makes us believe that similar [8] R. T. Snodgrass, The Interface Description Language:
tools, carefully differentiating between repetitive analysis Definition and Use. Computer Science Press
best done by software, and creative analysis best done by (forthcoming), 1989.
the programmer, can be useful in other environments and [9] S. R. Vegdahl, "Local code generation and compaction
for other architectures. The approach of abstracting infor- in optimizing microcode compilers," Ph.D. 0
mation to confine pipeline-related issues to early phases dissertation, Dept. Comp. Sci., Carnegie-Mellon

mad~e algorithm developm.nt feasible. Since many Univ., Pittsburgh, PA, December 1982..
machineuse a horizontal denelo ctnt foats . icemany [10] Weitek Corporation, XL-Series Hardware Designer's
machines use horizontal instruction formats and pipelining, Guide. Weitek qorporation, Sunnyvale, CA 94086,.-
the ideas contained in this paper could be used to write yA T le 1987.
similar tools for other machines, though every architecture, j,, _ ,.., lablllty Coe.,

ELECTE jvaland!/or

~i ~nUrt'ii~C'iMAY 12 1989 Ds poare,-_jze; N ALPDS: N~im nEi:Cc.,"l,

